

FLUIDS - A First-Order Lightweight Urban Intersection Driving Simulator

FLUIDS - a First-Order Local Urban Intersection Driving Simulator by Berkeley AUTOLAB.
Read our paper

Contents:

	Why FLUIDS?
	Tests Generalization

	Multi-Agent Planning

	Built-in Supervisors

	Installation
	Installing FLUIDS Core

	Installing FLUIDS Gym Environments

	FLUIDS Core API
	Simulator Interface

	Action Types

	Observation Types

	Command Line Interface

	FLUIDS Gym Env API
	Supervisor Agent

Why FLUIDS?

To study and compare Reinforcement and Imitation Learning algorithms, the most commonly used benchmarks are OpenAI Gym, Mujoco, and ATARI games. However, these benchmarks generally fail to capture real-life challenges to learning algorithms, including multi-agent interactions, noisy sensors, and generalization. FLUIDS aims to fill this gap by providing a fast, birds-eye simulation of cars and pedestrians in an urban driving setting. Below, we highlight several notable capabilities of FLUIDS.

Tests Generalization

FLUIDS is designed to test how well agents generalize to new environments that are both in and out of sample from the initial state distribution. The initial state distribution can be specified to be a range of cars on the road starting at various lane positions. The randomness stems from the number of cars currently on the road and the location of each car.

To test how robust a policy is to out of sample distributions, FLUIDS allows for perturbations such as enabling pedestrians, varying traffic light timing and changing the amount of noise in the sensor readings.

Multi-Agent Planning

Another advantage of FLUIDS is that the number of supervisors that can be controlled by an agent and that controlled by the simulator is variable. Experiments such as coordinating a fleet of self-driving cars traversing an intersection or having a single self-driving car pass an intersection with multiple cars and pedestrians are all supported.

Built-in Supervisors

In order to collect consist training data for Imitation Learning experiments and a baseline for performance. FLUIDS provides access to an array of supervisors, which can perform the driving tasks by having access to the global state of the world. The algorithms for the supervisors are the same planning stack used for the background agents.

Installation

Installing FLUIDS Core

The FLUIDS core simulator provides the core simulation environment. Currently only install from source is supported.

git clone https://github.com/BerkeleyAutomation/Urban_Driving_Simulator.git
cd Urban_Driving_Simulator
pip3 install -e .

Installing FLUIDS Gym Environments

The FLUIDS Gym Environment is compatible with agents designed for OpenAI’s Gym benchmark API. This interface layer depends on FLUIDS core.

git submodule update --init --recursive
pip3 install -e gym_fluids

FLUIDS Core API

Simulator Interface

The most powerful way to interact with fluids is to create a fluids.FluidSim object. This object creates the environment, sets up all cars, and pedestrians, and controls background objects in the scene. The initialization arguments to this object control the parameters of the generated environment. A fluids.State object controls the layout of the scene.

	
class fluids.FluidSim(visualization_level=1, fps=30, obs_space='fluids_obs_none', obs_args={}, background_control='fluids_background_null', reward_fn='fluids_reward_path', screen_dim=800)

	This class controls the generation and simulation of the urban environment.

	Parameters

	
	state (str) – Name of json layout file specifiying environment object positions. Default is “fluids_state_city”

	visualization_level (int) – 0 is no visualization. Higher numbers turn on more debug visuals.

	controlled_cars (int) – Number of cars to accept external control for

	background_cars (int) – Number of cars to control with the background planner

	background_peds (int) – Number of pedestrians to control with the background planner

	fps (int) – If set to a positive number, caps the FPS of the simulator. If set to 0, FPS is unbound. Default is 30

	obs_space (str) – Controls what observation representation to return for controlled cars. fluids.BIRDSEYE or fluids.NONE

	screen_dim (int) – Height of the visualization screen. Default is 800

	
get_control_keys()

	
	Returns

	Keys for every controlled car in the scene

	Return type

	list of keys

	
get_observations(keys={})

	Get observations from controlled cars in the scene.

	Parameters

	keys (dict of keys) – Keys should refer to cars in the scene

	Returns

	Dictionary mapping keys of controlled cars to FluidsObs object

	Return type

	dict of (key -> FluidsObs)

	
get_supervisor_actions(action_type=<class 'fluids.actions.SteeringAccAction'>, keys={})

	Get the actions assigned to the selected car by the FLUIDS multiagent planer

	Parameters

	
	action_type (fluids.Action) – Type of action to return. VelocityAction, SteeringAccAction, and SteeringAction are currently supported

	keys (set) – Set of keys for controlled cars or background cars to return actions for

	Returns

	Dictionary mapping car keys to actions

	Return type

	dict of (key -> fluids.Action)

	
set_state(state)

	Sets the state to simulate

	Parameters

	state (fluids.State) – State object to simulate

	
step(actions={})

	Simulates one frame

	Parameters

	actions (dict of (key -> action)) – Keys in dict should correspond to controlled cars.
Action can be of type KeyboardAction, SteeringAction, SteeringAccAction, or VelocityAction

	
class fluids.State(layout='fluids_state_city', controlled_cars=0, background_cars=0, background_peds=0, use_traffic_lights=True, use_ped_lights=True, vis_level=1)

	This class represents the state of the world

	Parameters

	
	layout (str) – Name of json layout file specifiying environment object positions. Default is “fluids_state_city”

	controlled_cars (int) – Number of cars to accept external control for

	background_cars (int) – Number of cars to control with the background planner

	background_peds (int) – Number of pedestrians to control with the background planner

	use_traffic_lights (bool) – Sets whether traffic lights are generated

	use_ped_lights (bool) – Sets whether pedestrian lights are generated

Action Types

FLUIDS supports four action types. All action types are acceptable for FluidSim.step.

	
class fluids.actions.KeyboardAction

	This action passes control to keyboard input

	
class fluids.actions.SteeringAction(steer)

	This action provides a steering control. The supervisor will control the acceleration

	Parameters

	steer (float in range (-1, 1)) –

	
class fluids.actions.SteeringAccAction(steer, acc)

	This action provides both steering and acceleration control.

	Parameters

	
	steer (float in range (-1, 1)) –

	acc (float in range (-1, 1)) –

	
class fluids.actions.VelocityAction(vel)

	This action provides a target velocity for the car to track

	Parameters

	vel (float in range (0, 1)) –

	
class fluids.actions.LastValidAction

	This action causes car to replay its last valid action.
This is useful when testing coarse planning methods.

Observation Types

FLUIDS supports two observation types currently, a BirdsEye observation and a Grid observation.

	
class fluids.obs.FluidsObs

	The base FLUIDS observation interface

	
get_array()

	Returns a numpy array representation of the observation

	Returns

	

	Return type

	np.array

	
class fluids.obs.GridObservation(car, obs_dim=500, shape=(500, 500))

	Grid observation type.
Observation is an occupancy grid over the detection region.
Observation has 9 dimensions: terrain, drivable regions, illegal drivable
regions, cars, pedestrians, traffic lights, way points, point trajectory and edge trajectory.
Array representation is (grid_size, grid_size, 9)

	
class fluids.obs.BirdsEyeObservation(car, obs_dim=500)

	Bird’s-eye 2D top-down image centered on the vehicle, similar to what is visualized.
Minor difference is that drivable regions are colorless to differentiate from illegal drivable regions.
Array representation is (obs_dim, obs_dim, 3).

Command Line Interface

FLUIDS also provides a command line interface for visualizing the environment running without a user agent. Controlled agents in this mode are controllable by keyboard only.

python3 -m fluids

Run with -h flag to see arguments

>>> python3 -m fluids -h
usage: __main__.py [-h] [-b N] [-c N] [-p N] [-v N] [-o str] [--state file]

FLUIDS First Order Lightweight Urban Intersection Driving Simulator

optional arguments:
-h, --help show this help message and exit
-b N Number of background cars
-c N Number of controlled cars
-p N Number of background pedestrians
-v N Visualization level
-o str Observation type
--state file Layout file for state generation

Keyboard commands for when visualizer is running:
 . Increases debug visualization
 , Decreases debug visualization
 o Switches observation type

FLUIDS Gym Env API

The FLUIDS Gym Environment provides a simpler common interface to the FLUIDS simulator that is compatible with general agents following the Gym API.

import gym
import gym_fluids

env = gym.make("fluids-v2")

The current Gym environment supports 1 controlled car interacting with 10 background cars and 5 pedestrians. The action space is a [steering, acc] pair. The observation space is a 500 x 500 RGB image from the car’s perspective. A reward function considering collisions and distance traveled along the given trajectory is provided.

Supervisor Agent

FLUIDS packages a supervisor agent that interfaces with FLUIDS’s multiagent planner. The supervisor is useful for collecting data for and benchmarking imitation learning algorithms. To use the supervisor, pass the observation and info dictionary to the fluids_supervisor object. Since FLUIDS’s multiagent planner requires full information of the world, the observation itself is not sufficient.

	::

	obs, rew, done, info = env.step(action)
action = gym_fluids.agents.fluids_supervisor(obs, info)

Index

 B
 | F
 | G
 | K
 | L
 | S
 | V

B

 	
 	BirdsEyeObservation (class in fluids.obs)

F

 	
 	FluidSim (class in fluids)

 	
 	FluidsObs (class in fluids.obs)

G

 	
 	get_array() (fluids.obs.FluidsObs method)

 	get_control_keys() (fluids.FluidSim method)

 	
 	get_observations() (fluids.FluidSim method)

 	get_supervisor_actions() (fluids.FluidSim method)

 	GridObservation (class in fluids.obs)

K

 	
 	KeyboardAction (class in fluids.actions)

L

 	
 	LastValidAction (class in fluids.actions)

S

 	
 	set_state() (fluids.FluidSim method)

 	State (class in fluids)

 	
 	SteeringAccAction (class in fluids.actions)

 	SteeringAction (class in fluids.actions)

 	step() (fluids.FluidSim method)

V

 	
 	VelocityAction (class in fluids.actions)

 nav.xhtml

 Table of Contents

 		
 FLUIDS - A First-Order Lightweight Urban Intersection Driving Simulator

 		
 Why FLUIDS?

 		
 Tests Generalization

 		
 Multi-Agent Planning

 		
 Built-in Supervisors

 		
 Installation

 		
 Installing FLUIDS Core

 		
 Installing FLUIDS Gym Environments

 		
 FLUIDS Core API

 		
 Simulator Interface

 		
 Action Types

 		
 Observation Types

 		
 Command Line Interface

 		
 FLUIDS Gym Env API

 		
 Supervisor Agent

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

