
FLUIDS Documentation
Release 1.0

Andrew Cui, Jerry Zhao, Michael Laskey, Berkeley AUTOLAB

Jun 01, 2018

Contents:

1 Why FLUIDS? 3
1.1 Tests Generalization . 3
1.2 Hierarchal Learning . 4
1.3 Multi-Agent Planning . 5
1.4 Built-in Supervisors . 5

2 Installation 7
2.1 Install FLUIDS . 7
2.2 Install FLUIDS from Source . 7
2.3 Optional OMPL Install . 7

3 Examples 9
3.1 Configuring the Environment . 9
3.2 Running the Environment . 10

4 Environments 13
4.1 The UrbanDrivingEnvironment Class . 13

5 Agents 15
5.1 Background . 15
5.2 Hierarchical . 16
5.3 Supervisors . 16
5.4 Tele-Op . 17
5.5 Pedestrian . 17

6 Intersections 19
6.1 Base Intersections . 19

7 Actions 21
7.1 Velocity Action . 21
7.2 Steering Action . 21

8 Observations 23
8.1 Raw . 23
8.2 Q-LIDAR . 23
8.3 Bitmap . 24

9 Objects 25

i

9.1 Cars . 25
9.2 Pedestrians . 26
9.3 Terrain . 26
9.4 Lanes . 26
9.5 Sidewalks . 27
9.6 Streets . 27

ii

FLUIDS Documentation, Release 1.0

FLUIDS - a First-Order Local Urban Intersection Driving Simulator. Read our paper

Contents: 1

FLUIDS Documentation, Release 1.0

2 Contents:

CHAPTER 1

Why FLUIDS?

To study and compare Reinforcement and Imitation Learning algorithms, the most commonly used benchmarks are
OpenAI Gym, Mujoco, and ATARI games. However, these benchmarks generally fail to capture real-life challenges
to learning algorithms, including multi-agent interactions, noisy sensors, and generalization. FLUIDS aims to fill this
gap by providing a fast, birds-eye simulation of cars and pedestrians in an urban driving setting. Below, we highlight
several notable capabilities of FLUIDS.

1.1 Tests Generalization

FLUIDS is designed to test how well agents generalize to new environments that are both in and out of sample from
the initial state distribution. The initial state distribution can be specified to be a range of cars on the road starting at
various lane positions. The randomness stems from the number of cars currently on the road and the location of each
car.

3

FLUIDS Documentation, Release 1.0

To test how robust a policy is to out of sample distributions, FLUIDS allows for perturbations such as enabling
pedestrians, varying traffic light timing and changing the amount of noise in the sensor readings. FLUIDS can convey
how robust a policy is via the generation of a coordinate axis plot as shown below, which demonstrates which helps
shows what disturbances significantly affect policy performance.

1.2 Hierarchal Learning

Self-driving cars commonly use a hierarchical planning stack to accomplish tasks, thus they make for a great bench-
mark to test recent advances in learning hierarchal structure. As shown below each background agent in has a planning
stack broken into four levels; behavior logic, nominal trajectory generation, velocity planning and low-level PID. The
details of how these components can be composed in a planning stack can be found in the FLUIDS white paper.

4 Chapter 1. Why FLUIDS?

FLUIDS Documentation, Release 1.0

When a tested agent acts in the simulator it can operate at the trajectory, velcoity or steering level of control. Thus the
whole hierarchy can be learned or only sub-components. To specify which level of control to apply, the action space
in the JSON config file can be changed to the designated level.

"agents":{
...
"action_space":"steering", #other options:"trajectory", "velocity"
...}

},

1.3 Multi-Agent Planning

Another advantage of FLUIDS is that the number of supervisors that can be controlled by an agent and that controlled
by the simulator is variable. Experiments such as coordinating a fleet of self-driving cars traversing an intersection or
having a single self-driving car pass an intersection can all be supported by simply changing the JSON config file.

"agents":{
"controlled_cars":1,
"background_cars":3,
...}

},

1.4 Built-in Supervisors

In order to collect consist training data for Imitation Learning experiments and a baseline for performance. FLUIDS
provides access to an array of supervisors, which can perform the driving tasks by having access to the global state of
the world. The algorithms for the supervisors are the same planning stack used for the background agents.

FLUIDS supports a supervisor for each level of the hierarchy. Thus, supervision can be used to potentially help
discover the hierarchy or to only learn sub-components. FLUIDS also allows for human supervision via the use of a
keyboard interface.

#Hierarchy Supervisors

#Provides Examples at the TrajectoryLevel of the Planner
sup_traj = TrajectorySupervisor(agent_num=0)

#Provides Examples at the Veloicty Level of the Planner
sup_vel = VelocitySupervisor(agent_num=1)

#Provides Examples at the Steering Level of the Planner
sup_steer = SteeringSupervisor(agent_num=2)

#Human Supervisor

#Uses keyboard to get signal

sup_human = KeyBoardAgent

See the Examples section for a tutorial on how to use the supervisor agents.

1.3. Multi-Agent Planning 5

FLUIDS Documentation, Release 1.0

6 Chapter 1. Why FLUIDS?

CHAPTER 2

Installation

2.1 Install FLUIDS

pip3 install gym-urbandriving

2.2 Install FLUIDS from Source

These commands install gym-urbandriving and its requirements in the current Python environment.

git clone https://github.com/BerkeleyAutomation/Urban_Driving_Simulator.git
cd Urban_Driving_Simulator
pip3 install -e .

2.3 Optional OMPL Install

Additional trajectory generation features are available if OMPL (Open Motion Planning Library) is installed. The
following is the installation instructino for Mac users.

Install Macports https://www.macports.org/install.php (Note macports is very heavily tied to xcode to guarantee this
to work you will need to have xcode installed) With macports installed perform the following three lines of code

sudo port sync
sudo port clean castxml
sudo port install ompl +app

Macport will download its own version of python2.7 that everything will work off of. To link the command line python
type the following:

7

https://www.macports.org/install.php

FLUIDS Documentation, Release 1.0

sudo port select python2 python2.7

8 Chapter 2. Installation

CHAPTER 3

Examples

This tutorial will walk you though many of the features of FLUIDs to run an intersection simulation with multiple user
controlled cars, background cars, pedestrians, and traffic lights. A link ot the final code is below:

Download

3.1 Configuring the Environment

The environment and agent configuration in FLUIDS is controlled by JSON configuration files.

"environment":{
"state":"four_way_intersection",
"visualize": true,
"visualize_lidar": true,
"max_time": 100

},

The “state” flag specifies the layout of the roads, terrain, and sidewalks in the scene by pointing the simulator to a
scene description JSON. We currently package only the four way intersection.

The “visualize” and “visualize_lidar” flags enable the graphical display, which is optional.

The “max_time” field specifies the maximum number of ticks the simulation will run before resetting. This is useful
for performing many roll-outs back-to-back.

"agents":{
"controlled_cars":1,
"background_cars":2,
"action_space":"steering",
"state_space":"Q-LIDAR",
"state_space_config":{

"goal_position":false,
"noise":0,
"omission_prob":0

(continues on next page)

9

FLUIDS Documentation, Release 1.0

(continued from previous page)

},
"bg_state_space_config":{

"noise":0,
"omission_prob":0

},
"use_traffic_lights":true,
"number_of_pedestrians":0,
"agent_mappings":{

"Car":"PlanningPursuitAgent",
"TrafficLight":"TrafficLightAgent",
"CrosswalkLight":"CrosswalkLightAgent",
"Pedestrian":"PedestrianAgent"

}
},

There’s a lot here, but most of it is self-explanatory. Here, we specify 1 controlled car with user-defined controls, and
3 background cars controlled by our supervisor. The “action_space” of our controlled car will be the steering control.
This can be configured to multiple levels of the self-driving hierarchy. The “state_space” and “state_space_config”
fields configure the state representation available to the user agent. Here we use our “quasi-lidar” representation.

We create the state with traffic lights and pedestrians. The “agent_mappings” field marks what types of agents are
controlling every type of background object.

3.2 Running the Environment

The basic evaluation loop is very simple. We initialize the environment with the config file. In the simulation loop, we
repeatedly step forward through the environment, receive observations, and provide new actions for all controlled cars
in the scene.

import gym
import gym_urbandriving as uds
from gym_urbandriving.actions import SteeringAction
import numpy as np
import json

config = json.load(open('configs/default_config.json'))
env = uds.UrbanDrivingEnv(config_data=config)

env._reset()
env._render()
obs = env.get_initial_observations()
action = SteeringAction(0, 0)

while(True):
obs, reward, done, info_dict = env._step([action])
env._render()
if done:

print("done")
env._reset()
obs = env.get_initial_observations()

Here we step forward through the simulation until either there is a collision, or the max time is reached. We provide a
SteeringAction because the environment was configured such that user cars received SteeringActions. The actions are
provided in an array to support multiple controlled vehicles.

10 Chapter 3. Examples

FLUIDS Documentation, Release 1.0

Now we connect agents to the controlled cars. For this test, we use keyboard agents.

from gym_urbandriving.agents import KeyboardAgent
agent = KeyboardAgent()
while(True):

action = agent.eval_policy(obs[0])
obs, reward, done, info_dict = env._step([action])
env._render()
if done:

print("done")
env._reset()
obs = env.get_initial_observations()

Notice that the observations returned are an array, one for each controlled car. The observation is specified in the
config file. For this example, Q-LIDAR observations are used. Q-LIDAR represents a set of observations similar to
what a self-driving car might receive from camera and LIDAR sensors.

3.2.1 Using Neural Background Agents

In default mode the simulator is running a predictive planner to automatically adjust the velocity of the car to avoid
collisions with others. This planner can be computationally expensive though, so an alternative is to used a neural net-
work based implementation that was trained to approximate the predictive planner. In order to active the approximate
planner and increase speed, adjust the “agent_mappings” flag in the configuration.

config['agents']['agent_mappings']['Car'] = 'NeuralPursuitAgent'

3.2.2 Using a Steering Supervisor

Instead of using a Keyboard agent, FLUIDS is packaged with supervisor agents at several levels of the controls
hierarchy for a self-driving car. First we replace the KeyboardAgent with a SteeringSupervisor. Since the steering
supervisor expects access to the full state, we specify this in the config file.

config['agents']['state_space'] = 'raw'

from gym_urbandriving.agents import SteeringSupervisor
agent = SteeringSupervisor()
while(True):

action = agent.eval_policy(obs[0])
obs, reward, done, info_dict = env._step([action])
env._render()

3.2.3 Using a Velocity Supervisor

While the steering supervisor provides full steering and acceleration controls to the car, FLUIDS also supports con-
trolling the car at different levels in the planning stack. For example, we can control the target velocity that the car
operates at using the Velocity Supervisor.

config['agents']['state_space'] = 'raw'
config['agents']['action_space'] = 'velocity'

3.2. Running the Environment 11

FLUIDS Documentation, Release 1.0

from gym_urbandriving.agents import VelocitySupervisor
agent = VelocitySupervisor()
while(True):

action = agent.eval_policy(obs[0])
obs, reward, done, info_dict = env._step([action])
env._render()

3.2.4 Using Pedestrians

FLUIDS also supports the simulation of pedesterian agents. Uncomment the following line in the provided file to add
background pedesterians in the scene. Adjust the flag in the configuration, which is loaded as a Python dictionary.

config['agents']["number_of_pedestrians"]:4

12 Chapter 3. Examples

CHAPTER 4

Environments

4.1 The UrbanDrivingEnvironment Class

class gym_urbandriving.UrbanDrivingEnv(config_data={}, init_state=None, re-
ward_fn=<function default_reward_function>,
randomize=False)

This class controls the evolution of a world state. While the PositionState represents the layout of objects
in the scene, the UrbanDrivingEnv controls the evolution of the scene, and manages background actors.

Note: This class is used both to represent the true, global state of the world, and as a search agent’s internal
view of the world.

Parameters

• config_data (Dict) – JSON config file is loaded into a dictonary specifing prameters

• init_state (PositionState) – The starting state for this environment (Only needed
if now JSON config file is used)

• reward_fn – A function which takes in one parameter, the PositionState,

• randomize (bool) – Sets whether env._reset() returns the environment to the initial
state, or if it returns it to a random state generated by the state’s randomize() function

_render(mode=’human’, close=False, waypoints=[], traffic_trajectories=[], transpar-
ent_surface=None)

If the renderer was specifed at construction, renders the current state of the world

Parameters

• mode (str) – For OpenAI Gym compatibility

• waypoints – Extra points you would like to render over top of the the scene, for debug-
ging

13

FLUIDS Documentation, Release 1.0

_reset(new_state=None)
Resets the environment to its initial state, or a new state

Parameters new_state (PositionState) – If specified, the environment will reset to this
state

_step(action, background_simplified=False, supervisor=False)
The step function accepts a control for the 0th agent in the scene. Then, it queries all the background
agents to determine their actions. Then, it updates the scene and returns.

Parameters

• action – An action for the agentnum object in the scene.

• agentnum (int) – The index for the object which the action is applied for.

Returns

• PositionState – State of the world after this step;

• float – Reward calculated by self.reward_fn(),

• bool – Whether we have timed out, or there is a collision)

• dict

14 Chapter 4. Environments

CHAPTER 5

Agents

5.1 Background

Used internally to control agents in the scene such as traffic lights, cross walks, pedestrians and back-
ground cars. These are not intended to be instantiated outside the UDS environment

class gym_urbandriving.agents.background.planning_pursuit_agent.PlanningPursuitAgent(agent_num=0)
Background agent which implements the full plannning stack given known behavioral logic. The planner first
generates a nominal trajecotry, then at each timestep plans its velocity to avoid collisons.

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(state, simplified=False)
Returns action based on current state

Parameters state (PositionState) – State of the world, unused

Returns

Return type tuple with floats (steering,acceleration)

class gym_urbandriving.agents.background.pursuit_agent.PursuitAgent(agent_num=0)

eval_policy(state, type_of_agent=’background_cars’)
Returns action based next state in trajectory.

Parameters state (PositionState) – State of the world, unused

Returns

Return type SteeringAction

15

FLUIDS Documentation, Release 1.0

5.2 Hierarchical

Used to build control at different levels of the planning software stack. They are used internally in FLUIDS to allow
the user to apply a different type of actions to the environment.

class gym_urbandriving.agents.hierarchical.velocity_action_agent.VelocityActionAgent(agent_num=0)
Hierarichal agent which implements the full plannning stack except the velocity component The planner first
generates a nominal trajecotry, then at each timestep recives a target velocity to track with PID controller.

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(action, state, simplified=False)
Returns action based next state in trajectory.

Parameters

• state (PositionState) – State of the world, unused

• action (VelocityAction or None) – Target velocity for car to travel at

Returns

Return type tuple with floats (steering,acceleration)

class gym_urbandriving.agents.hierarchical.steering_action_agent.SteeringActionAgent(agent_num=0)
Hierarichal agent which does not include any planning stack and only requires specifiying the steering agent.

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(action, state, simplified=False)
Returns action based next state in trajectory.

Parameters

• state (PositionState) – State of the world, unused

• action (SteeringAction) –

Returns

Return type tuple with floats (steering,acceleration)

5.3 Supervisors

Classes use to control different cars in the scene. Logically they are similar to background cars and have access to the
internal state of the world to make a decision. However, they can be used to collect data and provide ground truth of
what the supervisor would have done in a single state.

class gym_urbandriving.agents.supervisor.velocity_supervisor.VelocitySupervisor(agent_num=0)
Superivsor agent which implements the planning stack to obtain velocity level supervision of which the car
should follow.

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(state, simplified=False)
Returns action based next state in trajectory.

Parameters

16 Chapter 5. Agents

FLUIDS Documentation, Release 1.0

• state (PositionState) – State of the world, unused

• simplified (bool) – specifies whether or not to use a simplified greedy model for
look ahead planning

Returns

Return type float specifying target velocity

class gym_urbandriving.agents.supervisor.steering_supervisor.SteeringSupervisor(agent_num=0)
Superivsor agent which implements the planning stack to obtain steering level supervision of which the car
should follow.

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(state)
Returns action based on current world state

Parameters

• state (PositionState) – State of the world, unused

• action (float) – Target velocity for car to travel at

Returns

Return type SteeringAction

5.4 Tele-Op

Used for a human supervisor to operate the vehicle. Currently, the use of keyboard commands is supported.

class gym_urbandriving.agents.tele_op.keyboard_agent.KeyboardAgent(agent_num=0)
Agent which interprets user keyboard inputs

agent_num
int – Index of this agent in the world. Used to access its object in state.dynamic_objects

eval_policy(state)
Returns action based on keyboard input

Parameters state (PositionState) – State of the world, unused

Returns

Return type numpy array with elements (steering,acceleration)

5.5 Pedestrian

FLUIDS also packages a basic pedestrian controller for controling the movement of background pedestrians. Pedes-
trians display simple behavior, walking forwards unless blocked by a crosswalk signal.

class gym_urbandriving.agents.supervisor.pedestrian_supervisor.PedestrianAgent(agent_num=0)
Supervisor Agent for controlling pedestrians

agent_num
int – Index of this agent in the world

eval_policy(state)
Returns action based on state of world

5.4. Tele-Op 17

FLUIDS Documentation, Release 1.0

Parameters state (PositionState) – State of the world

Returns

Return type Turning angle, acceleration pair

18 Chapter 5. Agents

CHAPTER 6

Intersections

6.1 Base Intersections

class gym_urbandriving.state.PositionState(data, car_model=’kinematic’)
Abstract class representing the objects in a scene

collides_any(agentnum, type_of_agent=’background_cars’)
Returns if the agentnum object in the scene is colliding with any other object

Parameters agentnum (int) – The index of the object to query

Returns True if this object is colliding

Return type bool

create_agents()
Creates agents for objects in the scene

get_collisions()
Get list of all collisions in this state

Returns

• list – List of tuples, where each tuple contains a pair of coliding object indices. Dy-
namic_collisions contains collisions between cars and other cars.

• list – The corresponding list for collisions between dynamic objects and static objects

min_dist_to_coll(agentnum, type_of_agent=’background_cars’)
Returns the minimum distance between the object with id agentnum and a collideable object.

Parameters agentnum (int) – The index of the object to query

Returns Distance to nearest collideable object

Return type float

randomize()
Randomly generates car and pedestrian positions

19

FLUIDS Documentation, Release 1.0

20 Chapter 6. Intersections

CHAPTER 7

Actions

7.1 Velocity Action

class gym_urbandriving.actions.velocity_action.VelocityAction(velocity=0.0)
This class is a wrapper for the velocity control in the hierarchy it represents the target velocity for the car to
drive at

get_value()
Gets the value of the current velocity

Returns

Return type float

sample()
Samples a random control in this class using the OpenAI Box class

Returns

Return type velocity in numpy array shape (1,)

7.2 Steering Action

class gym_urbandriving.actions.steering_action.SteeringAction(steering=0.0, ac-
celeration=0.0)

This class is a wrapper for the action space at the lowest level of the heirarchy it represents the steering and
acceleration applied directly to the car.

get_value()
Gets the numpy array of the class

Returns

Return type steering and acceleration in numpy array shape (2,)

21

FLUIDS Documentation, Release 1.0

sample()
Samples a random control in this class using the OpenAI Box class

Returns

Return type steering and acceleration in numpy array shape (2,)

22 Chapter 7. Actions

CHAPTER 8

Observations

Observations are generated for each controlled car in the scene. The type of observation can be specified in the config
file as ‘raw’, ‘Q-LIDAR’, or ‘bitmap’. The step function in the environment returns an observation for each controlled
car in the scene as a list.

8.1 Raw

A copy of the the raw environment, giving agents full access to the scene, and all other objects in the scene. Using this
observation type should be avoided, as duplicating the environment incurs a significant performance penalty.

8.2 Q-LIDAR

A representation based on features a autonomus vehicle might extract from LIDAR sensors, which is the relative
distance to collideable objects in the scene. This is a numpy array of distances produced by a Featurizer. The density
and range of the Q-LIDAR beams can be configured in the featurizer.

class gym_urbandriving.utils.featurizer.Featurizer(config_data={},
beam_distance=300, n_arcs=9)

Object to convert a state observation into a Q-LIDAR observation.

beam_distance
int – How far each “LIDAR” beam will project into the scene

n_arcs
How many “LIDAR” beams to project around the car

featurize(current_state, controlled_key, type_of_agent=’controlled_cars’)
Returns a Numpy array of a Q-LIDAR representation of the state

Parameters

• current_state (PositionState) – State of the world

• controlled_key – Key for controlled car in the state to generate a feature for

23

FLUIDS Documentation, Release 1.0

Returns

Return type Numpy array. For each ray projected into the scene, adds distance to collision,
angle to collision, and velocity of intersected object

8.3 Bitmap

Returns a Numpy image array as generated by the visualizer, for vision-based control agents. Image is a top-down
view of the intersection.

24 Chapter 8. Observations

CHAPTER 9

Objects

9.1 Cars

class gym_urbandriving.assets.Car(x, y, xdim=80, ydim=40, angle=0.0, vel=0.0, max_vel=5,
mass=100.0, dynamics_model=’kinematic’, destina-
tion=None, trajectory=None)

Represents a point-model car.

Parameters

• x (float) – Starting x coordinate of car’s center

• y (float) – Starting y coordinate of car’s center

• angle (float) – Starting angle of car in world space

• vel (float) – Starting velocity of car

vel
float – Forwards velocity of car

max_vel
float – Maximum allowable velocity of this carst

xdim
float – Length of car

ydim
float – Width of car

can_collide(other)
Specifies whether this object can collide with another object

Parameters other – Object to test collision against

Returns True if this object can collide with other

Return type bool

25

FLUIDS Documentation, Release 1.0

step(action)
Updates this object given this action input

Parameters action – The action to take

9.2 Pedestrians

class gym_urbandriving.assets.Pedestrian(x, y, radius=12, angle=0.0, vel=0.0,
acc=0.0, max_vel=2.0, mass=100.0, dynam-
ics_model=’point’)

Represents a pedestrian as a circle

Parameters

• x (float) – Center x coordinate

• y (float) – Center y coordinate

• radius (float) – Size of the pedestrian

• angle (float) – Initial orientation, in degrees

• vel (float) – Initial velocity

• max_vel (float) – Maximum velocity

• mass (float) – Mass of pedestrian

step(action, info_dict=None)
Updates the pedestrian for one timestep.

Parameters

• action (1x2 array) – Steering / acceleration action.

• info_dict (dict) – Contains information about the environment.

9.3 Terrain

class gym_urbandriving.assets.Terrain(x, y, xdim=0, ydim=0, points=[], radius=0, ex-
cludes=[])

Represents a square of impassable terrain

Parameters points (list) – List of X-Y tuples in ccw order describing vertices of the polygon

9.4 Lanes

class gym_urbandriving.assets.Lane(x=0, y=0, xdim=0, ydim=0, angle=0.0, angle_deg=0,
points=[], curvature=0, inner_r=0, outer_r=0)

Represents a lane of road. Lanes have directionality, so cars should drive in the right direction. Default con-
struction creates a rectangular block.

Parameters

• x (float) – Upper left x coordinate of the lane block

• y (float) – Upper left y coordinate of the lane block

26 Chapter 9. Objects

FLUIDS Documentation, Release 1.0

• xdim (float) – Width of the lane block

• ydim (float) – Height of the lane block

• ; float (angle) – In degrees, the rotation of the lane block. The correct direction of
travel along this lane.

• points (list) – List of XY coordinates specifying edge points of a polygon. If specified,
lane will be constructed as a polygon.

• curvature (list) – If specified, generates a curved road segment with this arc angle,
centered at x, y, and with inner and outer radii

• outer_r (inner_r,) – Use with curvature argument to generated curved road segment.

generate_car(car_model=’kinematic’)
Creates a car on this lane ready to drive into the intersection

Parameters car_type ("kinematic" or "point" or "reeds_shepp") – Speci-
fies dynamics model for the car

Returns Generated Car object

Return type Car

9.5 Sidewalks

class gym_urbandriving.assets.Sidewalk(x, y, xdim, ydim, angle=0.0, angle_deg=0,
points=[])

Represents a block of sidewalk. Passable for pedestrians, not for cars

Parameters

• x (float) – Upper left x coordinate of the sidewalk block

• y (float) – Upper left y coordinate of the sidewalk block

• xdim (float) – Width of the sidewalk block

• ydim (float) – Height of the sidewalk block

• points (list) – If specified, constructs sidewalk as polygon

generate_man(man_type=<class ’gym_urbandriving.assets.pedestrian.Pedestrian’>)
Generates a man on the sidewalk

Returns Generated Pedestrian object

Return type Pedestrian

9.6 Streets

class gym_urbandriving.assets.Street(x, y, xdim, ydim, angle=0, points=[])
Represents a block of street. Passable for cars and pedestrians. Does not have directionality associated with it,
so use this for the middle of an intersection

Parameters

• x (float) – Upper left x coordinate of the street block

• y (float) – Upper left y coordinate of the street block

9.5. Sidewalks 27

FLUIDS Documentation, Release 1.0

• xdim (float) – Width of the street block

• ydim (float) – Height of the street block

• points – If specified, constructs this shape as a polygon

28 Chapter 9. Objects

Index

Symbols
_render() (gym_urbandriving.UrbanDrivingEnv method),

13
_reset() (gym_urbandriving.UrbanDrivingEnv method),

13
_step() (gym_urbandriving.UrbanDrivingEnv method),

14

A
agent_num (gym_urbandriving.agents.background.planning_pursuit_agent.PlanningPursuitAgent

attribute), 15
agent_num (gym_urbandriving.agents.hierarchical.steering_action_agent.SteeringActionAgent

attribute), 16
agent_num (gym_urbandriving.agents.hierarchical.velocity_action_agent.VelocityActionAgent

attribute), 16
agent_num (gym_urbandriving.agents.supervisor.pedestrian_supervisor.PedestrianAgent

attribute), 17
agent_num (gym_urbandriving.agents.supervisor.steering_supervisor.SteeringSupervisor

attribute), 17
agent_num (gym_urbandriving.agents.supervisor.velocity_supervisor.VelocitySupervisor

attribute), 16
agent_num (gym_urbandriving.agents.tele_op.keyboard_agent.KeyboardAgent

attribute), 17

B
beam_distance (gym_urbandriving.utils.featurizer.Featurizer

attribute), 23

C
can_collide() (gym_urbandriving.assets.Car method), 25
Car (class in gym_urbandriving.assets), 25
collides_any() (gym_urbandriving.state.PositionState

method), 19
create_agents() (gym_urbandriving.state.PositionState

method), 19

E
eval_policy() (gym_urbandriving.agents.background.planning_pursuit_agent.PlanningPursuitAgent

method), 15

eval_policy() (gym_urbandriving.agents.background.pursuit_agent.PursuitAgent
method), 15

eval_policy() (gym_urbandriving.agents.hierarchical.steering_action_agent.SteeringActionAgent
method), 16

eval_policy() (gym_urbandriving.agents.hierarchical.velocity_action_agent.VelocityActionAgent
method), 16

eval_policy() (gym_urbandriving.agents.supervisor.pedestrian_supervisor.PedestrianAgent
method), 17

eval_policy() (gym_urbandriving.agents.supervisor.steering_supervisor.SteeringSupervisor
method), 17

eval_policy() (gym_urbandriving.agents.supervisor.velocity_supervisor.VelocitySupervisor
method), 16

eval_policy() (gym_urbandriving.agents.tele_op.keyboard_agent.KeyboardAgent
method), 17

F
featurize() (gym_urbandriving.utils.featurizer.Featurizer

method), 23
Featurizer (class in gym_urbandriving.utils.featurizer), 23

G
generate_car() (gym_urbandriving.assets.Lane method),

27
generate_man() (gym_urbandriving.assets.Sidewalk

method), 27
get_collisions() (gym_urbandriving.state.PositionState

method), 19
get_value() (gym_urbandriving.actions.steering_action.SteeringAction

method), 21
get_value() (gym_urbandriving.actions.velocity_action.VelocityAction

method), 21

K
KeyboardAgent (class in

gym_urbandriving.agents.tele_op.keyboard_agent),
17

L
Lane (class in gym_urbandriving.assets), 26

29

FLUIDS Documentation, Release 1.0

M
max_vel (gym_urbandriving.assets.Car attribute), 25
min_dist_to_coll() (gym_urbandriving.state.PositionState

method), 19

N
n_arcs (gym_urbandriving.utils.featurizer.Featurizer at-

tribute), 23

P
Pedestrian (class in gym_urbandriving.assets), 26
PedestrianAgent (class in

gym_urbandriving.agents.supervisor.pedestrian_supervisor),
17

PlanningPursuitAgent (class in
gym_urbandriving.agents.background.planning_pursuit_agent),
15

PositionState (class in gym_urbandriving.state), 19
PursuitAgent (class in

gym_urbandriving.agents.background.pursuit_agent),
15

R
randomize() (gym_urbandriving.state.PositionState

method), 19

S
sample() (gym_urbandriving.actions.steering_action.SteeringAction

method), 21
sample() (gym_urbandriving.actions.velocity_action.VelocityAction

method), 21
Sidewalk (class in gym_urbandriving.assets), 27
SteeringAction (class in

gym_urbandriving.actions.steering_action),
21

SteeringActionAgent (class in
gym_urbandriving.agents.hierarchical.steering_action_agent),
16

SteeringSupervisor (class in
gym_urbandriving.agents.supervisor.steering_supervisor),
17

step() (gym_urbandriving.assets.Car method), 25
step() (gym_urbandriving.assets.Pedestrian method), 26
Street (class in gym_urbandriving.assets), 27

T
Terrain (class in gym_urbandriving.assets), 26

U
UrbanDrivingEnv (class in gym_urbandriving), 13

V
vel (gym_urbandriving.assets.Car attribute), 25

VelocityAction (class in
gym_urbandriving.actions.velocity_action), 21

VelocityActionAgent (class in
gym_urbandriving.agents.hierarchical.velocity_action_agent),
16

VelocitySupervisor (class in
gym_urbandriving.agents.supervisor.velocity_supervisor),
16

X
xdim (gym_urbandriving.assets.Car attribute), 25

Y
ydim (gym_urbandriving.assets.Car attribute), 25

30 Index

	Why FLUIDS?
	Tests Generalization
	Hierarchal Learning
	Multi-Agent Planning
	Built-in Supervisors

	Installation
	Install FLUIDS
	Install FLUIDS from Source
	Optional OMPL Install

	Examples
	Configuring the Environment
	Running the Environment

	Environments
	The UrbanDrivingEnvironment Class

	Agents
	Background
	Hierarchical
	Supervisors
	Tele-Op
	Pedestrian

	Intersections
	Base Intersections

	Actions
	Velocity Action
	Steering Action

	Observations
	Raw
	Q-LIDAR
	Bitmap

	Objects
	Cars
	Pedestrians
	Terrain
	Lanes
	Sidewalks
	Streets

